小学数学六年级教案模板7篇

时间:
Kris
分享
下载本文

我们在写教案的时候,一定要注意教学方法有创新,每个人在写教案的时候,都要注意过渡好每个教学环节,陆玖范文网小编今天就为您带来了小学数学六年级教案模板7篇,相信一定会对你有所帮助。

小学数学六年级教案模板7篇

小学数学六年级教案篇1

一 、学生情况分析:

上学期期末参加考试人数10人,本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。

二、教材分析:

教学任务:本册教材内容包括:负数,比例,圆柱、圆锥和球,简单的统计,整理和复习等内容。

本册教材的教学是让学生:

1.负数的意义,会用负数表示日常生活中的问题。

2.理解比例的意义和性质,会解比例,理解正比例和反比例的意义,能够判断两种量成正比例或反比例,会用比例知识解决简单的问题;能给出的有正比例关系的数据在有坐标系的方格纸上画图,并能量的值估计另量的值。

3.会看比例尺,能方格纸等按的比例将简单图形放大或缩小。

4.认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。

5.能从统计图表提取统计信息,解释统计结果,并能的判断或简单的预测;体会数据产生误导。

6.经历从生活中问题、问题、解决问题的过程,体会数学在日常生活中的作用,综合运用数学知识解决问题的能力。

7.经历对"抽屉原理"的探究过程,"抽屉原理",会用"抽屉原理"解决简单的问题,发展分析、推理的能力。

8.系统的整理和复习,对小学阶段所学的数学知识的理解和,的、灵活的计算能力,发展思维能力和空间观念,综合运用所学数学知识解决问题的能力。

9.体会学习数学的乐趣,学习数学的兴趣,学好数学的信心。

10.养成作业、书写整洁的习惯。

教学要求:

1、初步认识负数,能正确地读、写正数和负数;使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

2、掌握圆柱、圆锥的特征,掌握几何体体积的计算公式,学会正确计算它们的体积。

3、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。

4、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。

5、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。

教学重点:圆柱、圆锥 ,比例的应用,小学阶段主要数学知识的复习。

三、教学措施:

1、创设愉悦的教学情境,激发学生学习的兴趣。提倡学法的多样性,关注学生的个人体验。

2、在集体备课基础上,还应同年级老师交换听课,反思,真正领会教学设计意图,驾御课堂的能力。教师应转变观念,采用"激励性、自主性、性"教学策略,以问题为线索,恰当运用教材、媒体、现实材料、难点,变多讲多练,为精讲精练,真正师生互动、生生互动,从而调动学生学习,教与学的效益。

3、在教学中,为学生提供创造参与教学活动的情境,努力构建"和谐有效"课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。

4、 在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。

5、 在教学中要重视学生的学法指导,培养学生的迁移、类推能力。

6、 抓好育尖补差工作,利用课余时间为他们补课。

四、课时安排

六年级下学期数学教学安排了60课时的教学内容,各教学内容教学课时大致安排如下,教师教学时可以本班情况灵活:

小学数学六年级教案篇2

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

5÷4=1……1 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

7÷5=1…… 2 1+2=3?

7÷5=1…… 2 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么 10÷5=2 正好分完, 至少数是商

(6)好再增加一支铅笔,,你来说

11÷5=2……1 2+1=3 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

(1、367人相当于鸽子,365、或366天相当于鸽巢......

? 2、49人相当于鸽子,12个月相当于鸽巢......)

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

下 课!

板书设计:

鸽? 巢? 问? 题

物体? 抽屉 至少数

4? ÷ 3 =? 1……1 1+1=2?

5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

7? ? ÷ 5? =? 1……2? ? ? 1+1=2

9 ÷ 5? =? 1……4? 1+1=2

11 ? ÷? 5? =? 2……1 ? 2+1=3

28 ÷ 5? =? 5……3? 5+1=6

100 ? ÷ 30? =? 3……1 3+1=4?

m ÷ n = 商……余数? 商+1

小学数学六年级教案篇3

教学内容:冀教版六年级上册第70-71页

教学目标:

1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。

2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

教学重点和难点

理解成数和折扣的含义;理解成数与分数、百分数的含义。

教学过程设计

(一)复习准备

1.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

2.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。

板书:百分数应用题

(二)学习新课

1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?

2、成数的含义。

师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。

(1)口答:

“三成”是十分之( ),改写成百分数是( )。

“三成五”是十分之( ),改写成百分数是( )。

(2)七成 二成五 五成相当于百分之多少?

3、售价加两成是什么意思?求售价应先算出什么?

还可以怎样算?学生交流解题思路。

4.出示例2。

例2:曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?

(1)学生读题,理解题中的数学信息。

(2)减产一成五是什么意思?

(3)学生独立解答,指名学生说解题思路。

师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

板书:

37.4×(1-15%)

=37.4×0.85

=31.79(吨)

答:今年产棉花31.79万千克。

3.练习。

小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?

6.课堂小结。

今天我们学习了哪些知识?

师述:今天我们学习了有关“成数”的知识,知道了“成数”的含义,以及“成数”与分数和百分数之间的关系,并且学习了有关“成数”的一些实际的、简单的应用题。

(三)巩固反馈

1.填空:

(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。

(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。

2.把下面的百分数改写成“成数”。

75% 60% 42% 100% 95%

小学数学六年级教案篇4

一、教学目标:

1、使学生认识百分数。

2、了解百分数的意义。

3、会写百分数。

4、区分百分数与分数的不同。

5、让学生在各种活动中,培养比较、分析、分辨的能力。

二、教学重难点:

理解百分数的意义

三、教学过程:

(一)、引出百分数,教学百分数的读法。

1、百分数的引出

师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)

师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?

2、揭题

生展示他们找到的百分数。

师有选择的板书并小结:看来生活中这样的数确实挺多的。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。

(二)、凸显百分数的优点,教学写法

1、比较中凸显百分数的优点

师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)

年级 总人数 近视人数 近视人数占总人数的 近视率

二年级 20 2

三年级 25 3

师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。

学生反馈:可能会出现通分成分母是50的,也可能是100的。

师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)

2、教学写法

师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。

(三)、百分数意义、

1、指导着说百分数的意义

师:三年级的近视率12%指的是哪两个数之间的关系?

师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)

师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)

2、生自主说

师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64.2%分别表示什么意思呢?自己轻轻地说一说。

生反馈说,师选择小学生近视率表示意义板书。

师:看到这些信息,你想说什么呢?

3、小组内说

师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?

生反馈,师挑选组的代表说,并板书。

4、小结百分数意义

师:说了那么多百分数的意义,那么到底百分数表示什么呢?

师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)

(四)、辨别百分数与分数区别

1、辨别

师:我们来看看下面的百分数是表示谁是谁的关系呢?

出示:

鸡的只数是鸭的75%

一根绳子的长度是一根铁丝的51/100。(51/100可以改写成51%吗?)

出示:

一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)

2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。

3、加深理解进行判断

(1)一段绳子长29/100;

(2)一段绳子长29%米;

(3)分母是100的分数都是百分数;

(4)百分数的分母都是100

(五)、巩固练习

师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?

1、写出下面的百分数

百分之一 百分之二十八 百分之零点五

2、读出下面百分数,想想下面的信息给了你哪些启示?

(1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。

(2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0.5%。

(3)今天我们班同学的出勤率是100%。

四、教学结束:

课堂总结

师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感

同学们对于学习也要付出努力,不怕辛苦。

小学数学六年级教案篇5

教学目标:

1. 通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

2. 经历探索活动,了解反比例曲线图的特征。

教学重点:

探究长方形面积不变时,长与宽的关系。

教学难点:

发现表示反比例曲线图的特征。

教学过程:

一、旧知铺垫。

1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?

3、说一说。

(1) 两个乘数的变化情况。

(2) 两个乘数成什么关系?

(3) 你有什么猜想?

二、探索新知。

用x、y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。

x/cm 1 2 3 4 6 8 12 24

y/cm 24 12 8 6 4 3 2 1

1、说一说长与宽的变化情况。(小组交流)

2、这里哪个量一定?

3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

板书:长×宽=长方形面积(一定)

4、根据上面的数据,在方格纸上画出8个长方形。(每格代表 1 cm2)

过程要求

(1) 出示方格纸,并标明x、y轴上的数字。

(2) 教师边讲解,边画长方形。

(3) 学生接着画。(直接在课本上完成)

5、连接图中的点a,b,c,d……

(1) 猜一猜:图中的点a,b,c,d……在一条直线上吗?

(2) 师生一起连线,验证自己的猜想。

三、课堂小结

说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。

四、巩固练习

面包的总个数不变,每袋装的个数与袋数如下表。

每袋个数 2 3 4 6 8 12 24

袋 数 12 8 6 4 3 2 1

(1)每袋个数与袋数有什么关系?说明理由。

(2)把上面的数据制成图表。

小学数学六年级教案篇6

?教学内容】

解比例。(教材第42页例2、例3及练习八的习题)。

?教学目标】

1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。

2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。

3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

?重点难点】

1、使学生掌握解比例的方法,学会解比例。

2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。

?教学准备】

多媒体课件。

?情景导入】

上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

学生在小组中议一议,再汇报。

师:这节课,我们还要继续学习有关比例的知识,就是解比例。

板书课题:解比例。

?新课讲授】

1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?

学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。

师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。

2、教学例2。

教师用多媒体课件出示例2。

指名读题,根据题意,描述两个相等的比。

=110或模型高度:实际高度=1∶10。

让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?

教师板书∶320=1∶10,你能试着计算出来吗?

请一名学生板演,其余的学生在练习本上做。

做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。

师:怎样解这个方程?

生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。

小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。

3、教学例3。

解比例:

过程要求:学生独立练习,求出未知项。

同学之间互相交流,发现问题,及时解决。请一位学生上台板演。

解:2、4x=1、5×6

x=

x=3、75

提问:还可以用其他的知识解比例吗?

学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。

4、总结解比例的方法。

教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?

学生回忆解比例的过程。

教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?

学生:根据比例的基本性质把比例转化成方程。

?课堂作业】

1、完成教材第42页“做一做”第1题。

学生独立练习,教师指名板演,集体订正。

2、完成教材第43~44页第6、7、8、9、10、11、12、13题。

答案:1、x=7、5x=x=0、6

2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。

第7题:组织学生独立练习。指名板演,集体订正。

第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。

第9题:组织学生阅读题目,理解题意,并独立练习。

第10题:组织学生小组合作完成,指名汇报。

第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。

第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。

第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。

?课堂小结】

通过这节课的学习,你在哪些方面得到了提高?

?课后作业】

完成练习册中本课时的练习。

小学数学六年级教案篇7

教学内容:

教科书第81、82页练习十五第6—11题。

教学目标:

1、进一步理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,并能根据运算律和运算性质进行一些分数的简便运算。

2、在学习分数四则混合运算的过程中,进一步积累数学学习的经验,用分数四则混合运算解决一些实际问题。

教学重、难点:

根据整数的运算律和运算性质对分数四则混合运算进行简便计算。

教学措施:

设计相应的计算题和实际问题,关注学习困难生的学习情况。

教学准备:

教学光盘及补充题

教学过程:

一、基本练习

1、练习十五第6题。

学生先回忆等式的性质,指名说一说。

观察每个方程,说说方程的特点。

提示:都要把方程的左边进行化简,再应用等式的性质求方程的解。

学生独立解每个方程,指名板演,进行讲评,提醒学生自觉进行检验。

2、计算下列各题,能简算的要简算。

(7/8—2/3)×(7/10+1/5)(2/5+1/3)÷4/5+3/4

3/10÷[1/2×(2/5+4/5)] 7/16÷1/10—7/16÷1/9

(1—1/6÷5/12)×7/6(4/25×99+4/25)÷1/8

学生独立计算,每人任选三题,同时指名学生板演。

教师结合学生板演情况进行讲评并及时总结分数四则混合运算的运算顺序。

3、练习十五第8题。

(1)图中告诉我们哪些信息,你会计算梯形的面积吗?

(2)学生独立列式计算,任选一题。

4、练习十五第9—11题。

(1)分析第9题,学生先读题并列出算式,然后请学生说说解题思路。

(2)分析第10题,先说说数量关系再列算式,要让学生明白要求两个小队平均每人采集树种多少千克,先要算这两个小队一共采集树种的千克数和这两个小队的总人数。

(3)分析第11题,解决每一问时鼓励学生说数量关系并注意第2小题与第3小题之间的联系。

二、拓展练习

解决实际问题:

1、一个食堂,星期一用去煤气7/4立方米,星期二用去煤气3/2立方米,两天用的煤气量占本周计划用气量的3/8。这一周计划用多少立方米煤气?

2、工程队运来黄沙9/2吨,运来的水泥比黄沙重量的2/3少1/5吨。黄沙和水泥一共运来多少吨?

3、小华看一本120页的故事书,前3天看了总页数的3/4,后2天准备按1:2看完剩下的页数,最后一天要看多少页?

三、全课总结

进行分数四则混合运算时不仅要注意运算顺序,还要注意分数加、减法与分数乘、除法的计算方法的不同,必须看清什么时候需要通分,什么时候需要先约分再计算;解决实际问题时要认真读题,分析数量关系再列式解答。

四、布置作业

练习十五第7、9、10、11题。

小学数学六年级教案模板7篇相关文章:

沪教六年级数学教学计划最新5篇

小学六年级下学期班主任工作总结推荐7篇

沪教六年级数学教学计划优质8篇

小学六年级写演讲稿通用7篇

小学六年级学生演讲稿推荐5篇

小学六年级作文笔尖流出的故事500字5篇

沪教六年级数学教学计划8篇

小学六年级学生演讲稿6篇

六年级数学下册教学工作计划8篇

小学语文六年级工作总结范文5篇

小学数学六年级教案模板7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
39075