我们可以在教案中加入实际案例,提高学生的应用能力,教案应当反映出学生的需求和水平,以便调整教学方法和材料的选择,下面是陆玖范文网小编为您分享的苏教版六年级上册数学教案8篇,感谢您的参阅。
苏教版六年级上册数学教案篇1
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、 简便运算:完成例2的学习,这一部分内容的`思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:乘法分配律 p28-29 例1、例2
教学目标:
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点:理解掌握乘法分配律。
教学难点:乘法分配律的得出及其运用。
教学安排:
一、 观察与思考:
1、 出示例1:(1)看下图计算,有多少个小正方体?
a、用实物演示引出两种算法。
(5+3)2=16(个) 52+32=16(个)
b、观察以上两式得到:(5+3)2=52+32
2、 出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)4=200(元) 304+204=200(元)
即:(30+20)4=304+204
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)6=42(角) 26+56=42(角)
即:(2+5)6=26+56
3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的、先算和再算积与先算积再算和是一样的)
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、 讨论与归纳:
1、 出示问题,读读想想。
a、 以上三组算式分别先算什么?再算什么?
b、 它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、 质疑。
为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、 用字母表示乘法分配律。
(a+b)c=ac+bc
三、 练习:
1、 根据乘法分配律填上适当的数或运算符号。
(8+6)3=8○3○6○3
(25+9)40= 40+ 40
(56+ )3=56 +8
2、 判断:
13(4+8)=134+8 ( )
13(4+8)=138+48 ( )
13(4+8)=134+138 ( )
四、 简便运算:
1、 出示例2:(125+70)8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、 选择题:
1624+8424的简便算法是( )。
a、(16+24)84 b、(16+84)24 c、(1684)24
3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)
(25+9)8 29175+2529 48128-2848 7599+75
4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41□+5923 □□+6328
五、 小结:
1、 乘法分配律及字母表达式。
2、 运用乘法分配律应注意什么?
①运算符号 ②分配合理
苏教版六年级上册数学教案篇2
教学目标
1.理解一个数乘以分数的意义,明白分数乘以分数的算理,掌握计算法则。
2.能正确地进行分数乘以分数的计算。
3.通过学生全面参与教学过程,培养学生迁移、观察、分析、概括的能力。
教学重点
理解意义,掌握法则。
教学难点
推导计算法则。
教学过程
(一)复习
2.口算下面各题,并说出算式的意义。
(二)导入新课
通过分数乘以整数意义的学习,使我们看到知识之间是有联系的,而且新知识都是在旧知识基础上发展的。今天我们继续研究一个数乘以分数的意义和计算方法。(板书课题)
(三)讲授新课
1.教师逐次出示投影片,引导学生认真观察,正确列出算式,说出算式的意义。
投影:
的3倍是多少。)(板书)
投影:
一半。)
其中的一份。)
师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)
少。)(板书)
投影:
先观察图,然后列式,结合图说出算式意义。(小组讨论)
汇报讨论结果,并板书。
(3)不出示投影图,你自己还想知道多少瓶的重量呀?
分别列式,说意义。
列式?算式的意义是什么?
(5)观察概括:观察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)
论)
汇报讨论结果,并板书:
一个数乘以分数的意义就是求这个数的几分之几是多少?
(6)练习:说说算式意义。
2.推导法则。
我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应该怎样计算呢?
耕地多少公顷?
(把一公顷平均分成2份,取其中一份,是1小时耕的。)
拿出发的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)
①再贴出一张折叠后的结果。
这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)
论,后订正,板书)
分数有什么关系?(原式两分数的分母相乘。)
并计算出结果。
汇报、订正并板书。
贴出在折纸上表示的结果。
观察:原式和结果分子、分母有什么关系?概括分数乘以分数的计算法则。(讨论、订正)
(分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)
练一练
投影订正三种做法:
比较哪种方法对?哪种方法好?注意:先约分再乘。(板书)
(四)巩固练习
(做本上或投影片上)
1.计算例2中算式的结果。
投影反馈时,强调先约分。
3.第7页,第1题,看图填空。(做书上)
4.先说过程,再说结果:
5.第7页,第4题,列式计算。
6.判断:
(五)课堂总结
这节课我们学了哪些知识?意义是什么?法则是什么?应注意什么?
课堂教学设计说明
这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种能力。教案设计重视学生全面参与教学过程,如在教师的指导下,让学生积极主动地探索意义;用动手折叠、画,讨论等形式推导法则。使学生加深理解。教案中注意扶放结合,如例3第一问,是老师帮助学生学习,掌握分析思路,而第二问则是放开让学生依照第一题的解题思路学生自己列式、画图、说意义、推算结果。总结意义和法则的结论时,都是由感性认识到理性认识,使学生自己得出结论。
苏教版六年级上册数学教案篇3
设计说明
1.立足于学生已有的知识经验,借助旧知展开教学。
本设计充分利用“黄豆营养成分”这一情境,对教材内容略做调整,通过让学生自己提出问题并解决问题的活动方式,自然引出“求一个数的百分之几是多少,用乘法计算”这一新知,调动学生已有的知识储备,与分数乘法应用题作比较,体会两种问题的共同特征,以实现新旧知识的自然过渡。
2.渗透数学思想,促进学生对数学本质的探究。
在对一个数乘百分数的算法的探究中,当学生发现可以将百分数转化成分数和小数来计算时,我向学生提出了“将新知识转化成学过的知识来解决问题”是学习数学的好方法这一理念,这既能对学生的学习方法进行指导,也能对学生进行数学思想的渗透。一节好的数学课,不仅要求教师完美地将数学知识呈现给学生,更重要的是让学生从数学学习中获得有价值的思想方法,这些在学生的后续学习中会用到,数学课的魅力应该体现在对学生思想的启迪上。
课前准备
教师准备,ppt课件
学生准备,收集有关食物营养含量的信息
教学过程
⊙创设情境,激趣导入
1.创设情境。
师:(手里拿一把黄豆)请同学们估一估,这些黄豆大约有多少克?(约250g)
师:你们知道黄豆中含有哪些营养成分吗?(蛋白质、脂肪、碳水化合物等)
师:你们的想法和营养学家检测出来的结果是一样的,营养专家还检测出了有关数据,让我们一起来看一看吧!
课件出示:黄豆中的蛋白质含量约占36%,脂肪含量约占18%,碳水化合物含量约占25%。
师:你能从中发现哪些数学信息?
2.引入新课。
师:你们知道我手中的这些黄豆含有多少克蛋白质吗?这节课我们就来解决有关蛋白质含量的问题。(板书课题:营养含量)
设计意图:教师通过手拿黄豆的情境,结合课件,让学生了解到原来黄豆含有这么多有营养的物质。教学从生活实际出发,激发学生的学习兴趣,让学生在现实情境中体会和理解数学,发现生活中的数学问题。
⊙自主合作,探究新知
1.解决蛋白质含量的问题,应该如何列式?
(1)师:我们已经收集到了很多关于黄豆营养含量的问题,你们能利用收集到的信息,设计一个求蛋白质含量的问题吗?
(学生提取有用信息,编写题目:黄豆中的蛋白质含量约占36%,在250g黄豆中,蛋白质约有多少克)
(2)师:下面请同学们独立列出算式解决这个问题,要注意解释清楚为什么要这样列式。
学生独立思考,列式并汇报交流。
①你能试着用画图法来理解吗?学生试着画图。
通过画图我们知道,求蛋白质约有多少克,就是求250g的36%是多少。
②学生试着列式:250×36%。
③列式依据:“求一个数的几分之几是多少,用乘法计算”,这道题是求250的36%是多少,所以也要用乘法计算。(36%化成分数是,这道题也可以理解为“求250的是多少”,所以用乘法计算)
2.计算蛋白质含量,学习百分数化成小数、分数的方法。
(1)师:你们有办法解决吗?请同学们以250×36%为研究对象,4人一组展开交流,共同商量解决的办法,并将计算过程写在练习本上。
(2)学生交流并展示学习成果。
方法一:把百分数化成分数计算。
36%==250×36%=250×=90(g)
方法二:把百分数化成小数计算。
36%=0.36250×36%=250×0.36=90(g)
(3)方法总结:将新知识与旧知识联系起来,将新知识转化成我们已经学过的数学知识来解答,这是我们解决数学问题的好方法。
苏教版六年级上册数学教案篇4
教学内容:
长方体和正方体的认识
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:
教师准备多媒体课件、一个稍大的纸盒及一个有相对的两个面是正方体的纸盒、学生每人准备一个长方体小纸盒、每个小小组准备一个正方体
教学过程:
一、引入新课
1、由平面图形引到立体图形。
出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)
问:实物中长方体的每一个面是什么形?作图时,根据作图的原理除了前面和后面之外,其他各个面都画成了什么形?但实际是什么形?
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)
(2)棱的特点
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)
(3)顶点的个数
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征
**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征
(1)师:学习了长方体的特征,你们想不想自己来探究正方体的特征?你们准备从哪几个方面进行研究?想用哪些办法来研究?
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题
学生独立完成后交流。
四、总结
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
五、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
苏教版六年级上册数学教案篇5
1、目标的定位
目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。
?比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的是通过教学使学生认识到所学知识的价值所在。
值得关注的是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。
2、创造性地使用教材
?比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。
一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:
1、什么叫比例尺?
2、怎样求比例尺?
3、求比例尺时应注意哪些问题?
这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。
这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。
3、教学中的不足
在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。
后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于2000000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。
苏教版六年级上册数学教案篇6
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
苏教版六年级上册数学教案篇7
教学目标:
1.通过对实际问题的调查统计,使学生经历收集、整理、分析数据的整个过程,体会统计的意义。
2.使学生初步学会简单地收集和整理数据,会填写简单的统计表,会画简单的统计图,能对统计结果进行简单的分析。
3.培养学生分析和解决一些实际问题的能力,感悟“数学来源于生活,服务于生活”的道理。
教学重点:
收集和整理数据,会填写简单的统计表,会画简单的条形统计图。
教学难点:
能根据统计表、统计图,提取数学信息,提出数学问题,根据统计结果做出决策。
教学准备:
课件
教学过程:
一、谈话引入 提出问题
师:同学们,你们听说过“统计”这个词吗?板书:统计对于“统计”,你想知道什么?
(什么叫统计?可以怎样统计?学统计有什么用?„„)
过渡:同学们提出了很有价值的问题,这节课就让我们一起学习、认识“统计”。
二、探究问题
(一)认识统计表
1.出示课件,提取数学信息。 有四种饮料,桃汁5箱;梨汁10箱;苹果汁9箱;桔汁5箱。
2.学生把饮料的箱数填在练习纸上的统计表中。
3.汇报:你是怎样填的?
理解“合计”的意思。
4.对比饮料图与统计表
师:如果让你用很短的时间发现更多的数学信息,你看下面图(杂乱的),还是看上面的统计表?为什么?(每种饮料的箱数一目了然)
师:像这样的表,叫统计表。
板书:统计表
正因为统计表有这个优点,所以许多地方都用到它,你在哪见过统计表?
5.看统计表提取数学信息。
(二)认识统计图
1.课件:出示饮料图
2.生提出摆放建议
追问:分类摆放有什么好处?(便于拿取;箱数一目了然)
3.课件出示分类摆放的饮料图
师:工人叔叔摆放饮料的办法真好,我们可以照着这种方法画一张统计图。
板书:统计图
4.认识统计图
课件演示:方格纸→左侧数字→下面饮料名称
师:你打算怎样表示桃汁的箱数?
生自由发??
数学上用竖着的条形表示。(板书:条形)
5.画统计图
生拿出自己喜欢的彩笔,用【.1mi.net】条形表示其余饮料的数量。
6.看统计图,提取信息,提出数学问题
(三)学看统计图
1.课件出示两天后超市现有饮料统计图,看统计图回答问题。
2.根据统计图做出决策
师:看这张统计图,如果你是店长,你会做出什么决定?
(四)小结
三、实际应用
1.数学书上128页试一试
2.四届奥运金牌榜
填统计表,画统计图,回答问题
师:看这张统计图,你发现了什么?(金牌数增多。)
预测一下,2008年在北京举办的29届奥运会的金牌数。
四、拓展质疑
1.这节课上到这儿,你有什么收获?还有什么问题?
2.教师总结:我们今天只是初步学习了统计图和统计表,今后我们对统计还要进行深入地学习。
五、布置作业
选自己感兴趣的内容,自己找数据,制统计表,画条形统计图
教学内容:
长方体和正方体的认识
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:
教师准备多媒体课件、一个稍大的纸盒及一个有相对的两个面是正方体的纸盒、学生每人准备一个长方体小纸盒、每个小小组准备一个正方体
教学过程:
一、引入新课
1、由平面图形引到立体图形。
出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)
问:实物中长方体的每一个面是什么形?作图时,根据作图的原理除了前面和后面之外,其他各个面都画成了什么形?但实际是什么形?
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)
(2)棱的特点
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)
(3)顶点的个数
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征
__让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
__小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征
(1)师:学习了长方体的特征,你们想不想自己来探究正方体的特征?你们准备从哪几个方面进行研究?想用哪些办法来研究?
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题
学生独立完成后交流。
四、总结
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
五、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2、会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3、引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4、借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程 :
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1、探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题:
底面积(㎡) 高(m) 圆柱体积(m3)
6 3
0.5 8
5 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
s底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
v =s底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1、 求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具学具:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七、布置作业
?家庭作业》第1页的练习。
苏教版六年级上册数学教案篇8
一、教材内容
人民出版社《义务课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流
……
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”
(1)看一看、读一读
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -18 ℃~-5 ℃
北京: -6 ℃~6 ℃
深圳: 15 ℃~25 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练
读一读,填一填。
6.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
它山之石可以攻玉,以上就是差异网为大家整理的8篇《六年级上册数学教案苏教版》,希望对您有一些参考价值。
苏教版六年级上册数学教案8篇相关文章: