成长的道路上,心得体会是必不可少的,心得体会是表达对做好有关工作的独到理解,下面是陆玖范文网小编为您分享的大数据课设心得体会7篇,感谢您的参阅。
大数据课设心得体会篇1
本次课程设计,使我对《数据结构》这门课程有了更深入的理解。《数据结构》是一门实践性较强的课程,为了学好这门课程,必须在掌握理论知识的同时,加强上机实践。
我的课程设计题目是线索二叉树的运算。刚开始做这个程序的时候,感到完全无从下手,甚至让我觉得完成这次程序设计根本就是不可能的,于是开始查阅各种资料以及参考文献,之后便开始着手写程序,写完运行时有很多问题。特别是实现线索二叉树的删除运算时很多情况没有考虑周全,经常运行出现错误,但通过同学间的帮助最终基本解决问题。
在本课程设计中,我明白了理论与实际应用相结合的重要性,并提高了自己组织数据及编写大型程序的能力。培养了基本的、良好的程序设计技能以及合作能力。这次课程设计同样提高了我的综合运用所学知识的能力。并对vc有了更深入的了解。《数据结构》是一门实践性很强的课程,上机实习是对学生全面综合素质进行训练的一种最基本的方法,是与课堂听讲、自学和练习相辅相成的、必不可少的一个教学环节。上机实习一方面能使书本上的知识变“活”,起到深化理解和灵活掌握教学内容的目的;另一方面,上机实习是对学生软件设计的综合能力的训练,包括问题分析,总体结构设计,程序设计基本技能和技巧的训练。此外,还有更重要的一点是:机器是比任何教师更严厉的检查者。因此,在“数据结构”的学习过程中,必须严格按照老师的要求,主动地、积极地、认真地做好每一个实验,以不断提高自己的编程能力与专业素质。
通过这段时间的课程设计,我认识到数据结构是一门比较难的课程。需要多花时间上机练习。这次的程序训练培养了我实际分析问题、编程和动手能力,使我掌握了程序设计的基本技能,提高了我适应实际,实践编程的能力。
总的来说,这次课程设计让我获益匪浅,对数据结构也有了进一步的理解和认识。
大数据课设心得体会篇2
通过本次课程设计,对图的概念有了一个新的认识,在学习离散数学的时候,总觉得图是很抽象的东西,但是在学习了《数据结构与算法》这门课程之后,我慢慢地体会到了其中的.奥妙,图能够在计算机中存在,首先要捕捉他有哪些具体化、数字化的信息,比如说权值、顶点个数等,这也就说明了想要把生活中的信息转化到计算机中必须用数字来完整的构成一个信息库,而图的存在,又涉及到了顶点之间的联系。图分为有向图和无向图,而无向图又是有向图在权值双向相等下的一种特例,如何能在计算机中表示一个双向权值不同的图,这就是一件很巧妙的事情,经过了思考和老师同学的帮助,我用edges[j]=up和edges[j]=up就能实现了一个双向图信息的存储。
对整个程序而言,dijkstra算法始终都是核心内容,其实这个算法在实际思考中并不难,也许我们谁都知道找一个路径最短的方法,及从顶点一步一步找最近的路线并与其直接距离相比较,但是,在计算机中实现这么一个很简单的想法就需要涉及到很多专业知识,为了完成设计,在前期工作中,基本都是以学习c语言为主,所以浪费了很多时间,比如说在程序中,删除顶点和增加顶点的模块中都有和建图模块相互重复的函数,但是由于技术的原因,只能做一些很累赘的函数,可见在调用知识点,我没有掌握好。
不过,有了这次课程设计的经验和教训,我能够很清楚的对自己定一个合适的水平,而且在这次课程设计中我学会了运用两个新的函数sprintf和包涵在#include头文件中的输入函数。因为课程设计的题目是求最短路径,本来是想通过算法的实现把这个程序与交通情况相连,但是因为来不及查找各地的信息,所以,这个计划就没有实现,我相信在以后有更长时间的情况下,我会做出来的。
1、巩固和加深了对数据结构的理解,提高综合运用本课程所学知识的能力。
2、培养了我选用参考书,查阅手册及文献资料的能力。培养独立思考,深入研究,分析问题、解决问题的能力。
3、通过实际编译系统的分析设计、编程调试,掌握应用软件的分析方法和工程设计方法。
4、通过课程设计,培养了我严肃认真的工作作风,逐步建立正确的生产观念、经济观念和全局观念。
根据我在实习中遇到得问题,我将在以后的学习过程中注意以下几点:
1、认真上好专业实验课,多在实践中锻炼自己。
2、写程序的过程中要考虑周到,严密。
3、在做设计的时候要有信心,有耐心,切勿浮躁。
4、认真的学习课本知识,掌握课本中的知识点,并在此基础上学会灵活运用。
5、在课余时间里多写程序,熟练掌握在调试程序的过程中所遇到的常见错误,以便能节省调试程序的时间。
这是一门纯属于设计的科目,它需用把理论变为上机调试。在学习科目的第一节课起,李老师就为我们阐述了它的重要性。它对我们来说具有一定的难度。它是其它编程语言的一门基本学科。
刚开始学的时候确实有很多地方我很不理解,每次上课时老师都会给我们出不同的设计题目,对于我们一个初学者来说,无疑是一个具大的挑战,撞了几次壁之后,我决定静下心来,仔细去写程序。老师会给我们需要编程的内容一些讲解,顺着老师的思路,来完成自己的设计,我们可以开始运行自己的程序,可是好多处的错误让人看的可怕,还看不出到底是哪里出现了错误,但是程序还是得继续下去,我多次请教了老师和同学,逐渐能自己找出错误,并加以改正。
tc里检查错误都是用英文来显示出来的,经过了这次课程设计,现在已经可以了解很多错误在英文里的提示,这对我来说是一个突破性的进步,眼看着一个个错误通过自己的努力在我眼前消失,觉得很是开心。此次的程序设计能够成功,是我和我的同学三个人共同努力作用的结果。在这一段努力学习的过程中,我们的编程设计有了明显的提高。
其实现在想起来,收获还真是不少,虽然说以前非常不懂这门语言,在它上面花费了好多心血,觉得它很难,是需用花费了大量的时间编写出来的。现在真正的明白了一些代码的应用,每个程序都有一些共同点,通用的结构,相似的格式。只要努力去学习,就会灵活的去应用它。
大数据课设心得体会篇3
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧—。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。
看完此书,我心中的一些问题:
1、什么是大数据?
查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2、大数据适合什么样的企业?
诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。
同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?
3、大数据带来的影响
当一波又一波的it技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?
1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是it公司
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。
在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。
一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?
我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。
在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
大数据课设心得体会篇4
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
?大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
?大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
大数据课设心得体会篇5
本次课程设计所用到的知识完全是上学期的知识,通过这次课程设计,我认识到了我对数据结构这门课的掌握程度。
首先我这个课程设计是关于二叉树的,由于是刚接触二叉树,所以我掌握的长度并不深。在编程之前我把有关于二叉树的知识有温习了一遍,还好并没有忘掉。二叉树这章节难度中上等,而且内容广泛,所以我只掌握了百分之六七十。
然后,在编程中我认识到了自己动手能力的不足,虽然相比较大二而言进步很大,但是我还是不满意,有的在编程中必须看书才能写出来,有的靠百度,很少是自己写的。还好,我自己组装程序的能力还行,要不这东拼西凑的程序根本组装不了。在编程中我还认识到了,编程不能停下,如果编程的时间少了,知识忘的会很快,而且动手也会很慢。同时,同学之间的合作也很重要,每个人掌握的知识都不一样,而且掌握程度也不一样,你不会的别的同学会,所以在大家的共同努力下,编程会变得很容易。在这次编程中,我了解到了自己某些方面的不足,比如说链表的知识,虽然我能做一些有关于链表的编程,但是很慢,没有别人编程的快,另外,二叉树和图的知识最不好掌握,这方面的知识广泛而复杂。以前,没动手编程的时候觉得这些知识很容易,现在编程了才发现自己错了,大错特错了,我们这个专业最重视的就是动手编程能力,如果我们纸上写作能力很强而动手编程能力很差,那我们就白上这个专业了。计算机这个专业就是锻炼动手编程能力的,一个人的理论知识再好,没有动手编程能力,那他只是一个计算机专业的“入门者”。在编程中我们能找到满足,如果我们自己编程了一个程序,我们会感到自豪,而且充实,因为如果我们专研一个难得程序,我们会达到忘我的境界,自己完全沉浸在编程的那种乐趣之中,完全会废寝忘食。编程虽然会乏味很无聊,但是只要我们沉浸其中,你就会发现里面的乐趣,遇到难得,你会勇往直前,不写出来永不罢休;遇到容易的,你会找到乐趣。编程是很乏味,但是那是因为你没找到编程重的乐趣,你只看到了他的不好,而没有看到他的好。其实,只要你找到编程中得乐趣,你就会完全喜欢上他,不编程还好,一编程你就会变成一个两耳不闻窗外事的“植物人”。可以说只要你涉及到了计算机,你就的会编程,而且还要喜欢上他,永远和他打交道,我相信在某一天,我们一定会把他当作我们不可或缺的好朋友。
最后我要谈的是长时间编程的好处,俗话说“熟能生巧”,确实是这样。如果我们长时间不编程,在一接触他,我们会感到很陌生。有规律的编程会提高我们的动手能力,我们的思维,也会让我们变得很细心。在一个几千行的程序中,我们都能找到错误,那我们还会怕其他的错误吗?可以说编程是我们在我们这一行业的一把利剑,如果我们能很好的利用它,我们就会成为这个行业的真正成功者。也许你会说就算变成好了也不一定成功,是的,但是你不会编程就一定不会成功。如果,我们想成为这个专业的成功者,我们就得爱上编程,不管他是怎么得乏味,怎么得无聊,我们都不能丢掉他。
总之,动手编程就是锻炼我们的动手能力,当然这个动手能力并不是科研上的动手能力,而是我们的动手编程能力,记住,只要你真正的喜欢上他,你就会发现其中的乐趣,我相信,只要你坚持下去,你一定会喜欢上他,把编程当作自己日常生活中一件必须做的事情。
大数据课设心得体会篇6
一周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情的方法和技巧。在设计过程中,和同学们相互探讨,相互学习,相互监督。我学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世,这次课程设计对我来说受益良多。
课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程。“千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。我这次设计的科目是数据结。
数据结构,是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。“数据结构”在计算机科学中是一门综合性的专业基础课。数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。通过这次模具设计,我在多方面都有所提高。
在界面设置中使用函数调用while。其中文本显示颜色和背景颜色都可以任意按照自己的喜好,任意改变,但改变的时候必须采用标准英文大写,同时在制作显示菜单的窗口,大小根据菜单条数设计。最后采用printf输出程序设计界面。
这次的程序软件基本上运行成功,可以简单的建立链式循环链表,并进行输出,及循环语句的运用和选择语句的控制。由于时间和知识上的限制,使得程序规模相对较小,即功能还不很全面,应用也不很普遍。原来c语言可是涉及很多知识,而不是枯燥无聊的简单的代码部分而已,利用c语言方面的知识,我们可以设计出更完善的软件。
通过这次的课程设计,更是让我深刻认识到自己在学习中的不足,同时也找到了克服这些不足的方法,这也是一笔很大的资源。在以后的时间中,我们应该利用更多的时间去上机实验,加强自学的能力,多编写程序,相信不久后我们的编程能力都会有很大的提高能设计出更多的更有创新的作品。
大数据课设心得体会篇7
完成了这次的二元多项式加减运算问题的课程设计后,我的心得体会很多,细细梳理一下,有以下几点:
1、程序的编写中的语法错误及修改
因为我在解决二元多项式问题中,使用了链表的方式建立的二元多项式,所以程序的空间是动态的生成的,而且链表可以灵活地添加或删除结点,所以使得程序得到简化。但是出现的语法问题主要在于子函数和变量的定义,降序排序,关键字和函数名称的书写,以及一些库函数的规范使用,这些问题均可以根据编译器的警告提示,对应的将其解决。
2、程序的设计中的逻辑问题及其调整
我在设计程序的过程中遇到许多问题,首先在选择数据结构的时候选择了链表,但是链表的排序比较困难,特别是在多关键字的情况下,在一种关键字确定了顺序以后,在第一关键字相同的时候,按某种顺序对第二关键字进行排序。在此程序中共涉及到3个量数,即:系数,x的指数和y的指数,而关键字排是按x的指数和y的指数来看,由于要求是降幂排序且含有2个关键字,所以我先选择x的指数作为第一关键字,先按x的降序来排序,当x的指数相同时,再以y为关键字,按照y的指数大小来进行降序排列。
另外,我在加法函数的编写过程中也遇到了大量的问题,由于要同时比较多个关键字,而且设计中涉及了数组和链表的综合运用,导致反复修改了很长的时间才完成了一个加法的设计。但是,现在仍然有一个问题存在:若以0为系数的项是首项则显示含有此项,但是运算后则自动消除此项,这样是正确的。但是当其不是首项的时候,加法函数在显示的时候有0为系数的项时,0前边不显示符号,当然,这样也可以理解成当系数为0时,忽略这一项。这也是本程序中一个不完美的地方。
我在设计减法函数的时候由于考虑不够充分就直接编写程序,走了很多弯路,不得不停下来仔细研究算法,后来发现由于前边的加法函数完全适用于减法,只不过是将二元多项式b的所有项取负再用加法函数即可,可见算法的重要性不低于程序本身。
3、程序的调试中的经验及体会
我在调试过程中,发生了许多小细节上的问题,它们提醒了自己在以后编程的时候要注意细节,即使是一个括号的遗漏或者一个字符的误写都会造成大量的错误,浪费许多时间去寻找并修改,总结的教训就是写程序的时候,一定要仔细、认真、专注。
我还有一个很深的体会就是格式和注释,由于平时不注意格式和注释这方面的要求,导致有的时候在检查和调试的时候很不方便。有的时候甚至刚刚完成一部分的编辑,结果一不注意,就忘记了这一部分程序的功能。修改的时候也有不小心误删的情况出现。如果注意格式风格,并且养成随手加注释的习惯,就能减少这些不必要的反复和波折。还有一点,就是在修改的时候,要注意修改前后的不同点在哪里,改后调试结果要在原有的基础上更加精确。
大数据课设心得体会7篇相关文章: