初二上册数学教案5篇

时间:
dopmitopy
分享
下载本文

在新学期教学工作前,相信教师一定都有事先准备一份教案,为了提高自己的教学质量,我们一定要养成提前制定教案的好习惯,以下是陆玖范文网小编精心为您推荐的初二上册数学教案5篇,供大家参考。

初二上册数学教案5篇

初二上册数学教案篇1

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2.能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图4.5-1的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如rt△abc),让学生自己发现斜边上的中线bo与斜线ac的大小关系,然后让学生自己给出如下证明:

证明:在矩形abcd中,对角线ac、bd相交于点o,ac=bd(矩形的对角线相等)。

ao=co

在rt△abc中,bo是斜边ac上的中线,且 。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图4.5-4,欲求对角线bd的长,由于bad=90,ab=4cm,则只要再找出rt△abd中一条直角边的长,或一个锐角的度数,再从已知条件aod=120出发,应用矩形的性质可知,adb=30,另外,还可以引导学生探究△aob是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形abcd是矩形,

ac=bd(矩形的对角线相等)。

又 。

oa=bo,△aob是等腰三角形,

∵aod=120,aob=180- 120= 60

aob是等边三角形。

bo=ab=4cm,

bd=2bo=244cm=8cm。

例2:(补充例题)

已知:如图4.5-5四边形abcd中,abc=adc=90, e是ac的中点,ef平分bed交bd于点f。

(1)猜想:ef与bd具有怎样的关系?

(2)试证明你的猜想。

解:(1)ef垂直平分bd。

(2)证明:∵abc=90,点e是ac的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理: 。

be=de。

又∵ef平分bed。

efbd,bf=df。

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

课堂练习

1.课本例1后练习题第2题。

2.课本例1后练习题第4题。

小结

1.矩形的定义:

2.归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3.直角三角形斜边上的中线等于斜边的一半。

4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

1.课本习题4.3a组第2题。

2.课本复习题四a组第6、7题。

初二上册数学教案篇2

教学目标:

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

二、导入新课:

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = .

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

三、练习

p69练习 1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

p75习题13.1活动第1、2、3题

初二上册数学教案篇3

教学目标:

1. 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2. 掌握勾股定理和他的简单应用

重点难点:

重点: 能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、 创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

= 请同学们对上面的式子进行化简,得到: 即 =

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、 讲例

1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△abc的 米,ab=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的cb的长,由于直角△abc的斜边ab=5000米,ac=4000米,这样的cb就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即bc=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、 议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、 作业

1、 1、课文 p11§1.2 1 、2

2、 选用作业。

初二上册数学教案篇4

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价—成本; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息—利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×x×2,利息税为2.43%x×2×20%

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%—x

由等量关系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

初二上册数学教案篇5

教学目标:

知识与技能

1、掌握直角三角形的判别条件,并能进行简单应用;

2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型、

3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识、

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、

教学难点

会辨析哪些问题应用哪个结论、

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△abc的两边ab=5,ac=12,则bc=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法、

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

1、如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为 , , ,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

2、继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:

5,12,13; 6, 8, 10; 8,15,17、

(1)这三组数都满足a2 +b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

3、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形、

满足a2 +b2=c2的三个正整数,称为勾股数、

4、例1 一个零件的形状如左图所示,按规定这个零件中 ∠a和∠dbc都应为直角、工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

1、下列几组数能否作为直角三角形的三边长?说说你的理由、

⑴9,12,15; ⑵15,36,39;

⑶12,35,36; ⑷12,18,22、

2、已知abc中bc=41, ac=40, ab=9, 则此三角形为_______三角形, ______是角、

3、四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积、

4、习题1、3

课堂小结:

1、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形、

2、满足a2 +b2=c2的三个正整数,称为勾股数、勾股数扩大相同倍数后,仍为勾股数、

初二上册数学教案5篇相关文章:

四年级数学上册教学工作计划6篇

三年级数学上册工作总结7篇

人教版九年级化学上册教案6篇

小学三年级数学上册教学工作计划8篇

6年级上册语文教案7篇

冀三年级数学上册教学计划7篇

六年级上册数学教学工作计划7篇

湘版四年级上册美术教案7篇

冀三年级数学上册教学计划优质8篇

初二学生自我总结800优秀5篇

初二上册数学教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
38046