圆柱的教案推荐5篇

时间:
Fallinlove
分享
下载本文

教案能够帮助教师更好地激发学生的学习动力,优秀的教案可以帮助教师更好地掌握教学重点和难点,陆玖范文网小编今天就为您带来了圆柱的教案推荐5篇,相信一定会对你有所帮助。

圆柱的教案推荐5篇

圆柱的教案篇1

第二课时

教学目标

1.经历同桌合作,测量、计算圆柱形物体体积的过程。

2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

教学重点

能根据学生自己测量的数据进行圆柱体积的计算。

教学难点

给出圆柱底面周长如何计算圆柱的体积。

教具准备

学生自备的茶叶筒或露露瓶。

教学过程

一、测量茶叶筒的体积

1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?

生:茶叶筒的高,底面直径或半径。

师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

学生同桌合作测量并计算。

2.交流测量数据的方法和计算的结果。

3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?

生:利用周长先求出半径,再进行计算。

师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。或用皮尺测量。请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

二、巩固练习

1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?

2.独立完成练一练的1-3题。

三、家庭作业

1.练一练的第4小题。

2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?

②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?

圆柱的体积

第三课时 容积

教学目标

1.结合具体事例,经历探索容积计算问题的过程。

2.掌握计算容积的方法,能解决有关容积的简单实际问题。

3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

教学重点

利用体积公式计算保温杯的'容积。

教学难点

计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。

教学过程

一、复习旧知

1.求下列圆柱的体积(口答列式)。

(1)底面积3平方分米,高4分米;

(2)底面半径2厘米,高2厘米;

(3)底面直径2分米,高3分米。

追问:圆柱的体积是怎样计算的?(板书:v=sh)

2.复习容积。

提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

3.引入新课。

我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

二、教学新课

1.教学例题。

出示例题,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。

2.注意体积单位和容积单位的区别,以及它们之间的换算:

1立方分米=1升 1立方厘米=1毫升

3.注意保温杯内壁的厚度应该减去几个才是内壁的直径,高应该减去几个厚度才是内壁的高?

4.学生独立完成。然后进行全班交流。

三、新课小结

1.提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

2.计算容积与计算体积有什么相同点和不同点?

四、提高练习

把6个这样的保温杯倒满水,大约需要多少千克水?

注意大头蛙的话:1毫升水重1克。

五、巩固练习

1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?

注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)

2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)

3.练一练第4小题。怎么钢管的体积?

1)钢管体积=大圆柱体积-小圆柱体积

2)钢管体积=钢管环形底面积高

圆柱的教案篇2

教学内容:

教科书第8~9页的圆柱体积公式的推导和例4,完成练习二的第1~4题。

教学目标:

1、通过学生动手操作,分组交流,探究出圆柱体体积的计算方法。

2、使学生理解和掌握圆柱体积的计算方法,并能结合实际计算出有关圆柱体的物体的体积。

教学重点:

圆柱体积计算公式。

教学难点:

圆柱体积计算公式的推导。

教学理念:

1、学习内容紧密联系生活实际。

2、学习的方式以多媒体展示、自主探索与小组讨论为主。

教学设计:

教学步骤:

教师活动过程

学生活动过程

一、激疑引入

1、求装在圆柱形容器中水的体积。

2、求橡皮泥捏的圆柱形体积。

3、创设情境。

1、出示装了水的圆柱容器。

2、师:容器里面的水什么形状,你们能想什么方法求出水的体积吗?

3、出示圆柱形橡皮泥。

4、你们有方法求这个圆柱形橡皮泥的体积吗?

5、课件出示:圆形柱子、压路机的圆柱形大前轮。你有办法求出它们的体积吗?

6、今天,就让我们一起来研究圆柱体积的计算方法。

1、学生讨论后汇报。

2、指名回答

二、媒体展示、引导探究

1、回顾旧知,帮助迁移

2、动手操作,实现迁移。

3、得出公式。

圆柱的体积=底面积×高

4、教学例4

5、拓展圆柱的体积计算公式。

1、让学生回忆我们怎样推导出圆面积计算公式的?

2、课件演示。

3、想一想:怎样计算圆柱的体积。

4、课件演示。

5、师:圆柱与所拼成的长方体有什么关系?

6、根据学生的汇报师生共同概括公式。

长方体的体积=底面积×高

圆柱的体积=底面积×高

7、引导学生用字母表示公式。

8、出示例4,让学生试做。提醒学生注意单位的'处。

9、让学生看可课本。

想一想:如果已知圆柱底面的半径r和高h,圆柱的体积的计算公式师什么?

10、教师行间巡视检查。

1、学生回答提问。

2、学生汇报。

3、学生分小组讨论。

3、学生操作学具,进行拼组。

4、学生讨论、交流、汇报。

5、学生齐读。

6、学生试做。

7、学生独立思考,相互交流。

三、利用资源、巩固练习。

1、做一做

2、练习二第一题

3、实践与应用

4、提高练习

1、让学生独立完成。

2、师:完成练习二第一题。

3、让学生取出所准备的圆柱形实物。

师:计算它的表面积,需要测量哪些数据并计算。

4、课件出示圆柱形的大柱子。要知道这根柱子的体积,测量哪些数据比较方便?

1、学生练习。

2、同桌相互检查,然后订正。

3、学生独立填表,反馈。

4、学生讨论,小组内交流。

5、各小组汇报。

6、学生讨论,全班交流。

四、课堂小结

师:这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?

学生回答

五、布置作业

师: 课堂作业:练习二第2,3题。

圆柱的教案篇3

教学内容

人民出版社六年级下册p17《圆柱的认识》

教材分析

本课的教学内容是人民出版社六年级下册p17《圆柱的认识》。本单元是小学阶段学习几何的最后部分,它对构建小学几何知识的整体结构,进一步发展学生的空间观念起着重要的作用。圆柱的认识是本单元的起始教材,圆柱是一种常见的立体图形,在日常生活和生产中有着广泛的应用,学生对它已经有了初步的感性认识,(有圆、长正方体作基础)是在感性认识的基础上来认识的。学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征是以后学习圆柱的表面积、体积以及圆锥和球的认识的基础;教学这部分内容,更有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。可见,圆柱的认识教学在后继的几何教学中起着至关重要的作用,要引导学生切实学好。

教学目标

1.知识与技能

联系学生的实际生活,通过观察实物模型,操作学具等活动,经历从实物抽象几何图形的过程,认识圆柱的特征及各部分名称。

2.过程与方法

通过操作、观察、比较、探索,经历从图形到概念的抽象过程。培养学生的分析、推理、判断和空间想象能力,理解事物间的相互联系,进一步强化学生对几何的直觉及立体观念。

3.情感、态度与价值感

经历探究过程,体验学习的乐趣,进一步构建立体图形的认知结构。

教学重点

理解并掌握圆柱的特征是本课的教学重点。

教学难点:

认识圆柱的侧面的特征。多角度探究了解圆柱。

教学具准备:

微课视频、多媒体、圆柱学具。

教学过程:

一、微课预习

学生回家看微课视频,预习自学圆柱的认识,完成微课作业,寻找生活中的圆柱,制作圆柱,思考提出问题。

二、课堂回顾,验收微课成果。

展示自己的圆柱,指一指底面、高、侧面。会读圆柱的相关数据。

三、课堂探究。将学生的问题按从易到难整理展示。

探究一:长方形旋转得到圆柱。

1、长方形沿着一条边旋转得到什么图形。

2、不同的旋转方法得到不同圆柱。

探究二:圆柱的展开图

动手操作

师:请同学拿出自己制作的圆柱,剪开,展示。

讨论圆柱的展开图的可能性。

探究三:圆柱的侧面展开后相关数据

圆柱的侧面展开的长方形的长和宽与什么有关。

三个不同的侧面展开图比较,得出符合侧面展开的条件。

长方形的长等于圆柱的底面周长,宽等于圆柱的高。

思维提升:如果下图材料正好做成一个圆柱,长方形的长和宽与什么有关?

探究四:圆柱的侧面展开可能是那些图形

小组讨论:长方形、正方形、平行四边形、梯形,那些可能是圆柱的侧面展开图。

探究五:拿一张长方形的纸围成圆柱。有几种可能。认识相关数据。

四、练习巩固

1、指出下面图形中哪些是圆柱?

2、判断题。对的打“√”,错的打“×”。

(1)圆柱体的高只有一条。

(2)圆柱体底面周长和高相等时,

沿着它的一条高侧面展开是个正方形。

3、为这个罐头盒设计一个包装。需要一张长宽各是多少的包装纸?

五、课堂总结

圆柱体的特点:

1、底面:两底面平行,是两个大小相同的圆。

2、侧面:是个曲面,沿高展开是个长方形,长相当于圆柱的底面周长,宽相当于圆柱的高。当侧面展开是正方形时,圆柱的底面周长和高相等。当沿着斜线展开是平行四边形。

3、高:两底面之间的距离是圆柱的高,圆柱有无数条高。

六、展示学生作品

七、课后思考

下面的长方形材料正好可以做一个高是10cm的圆柱,你能算出长方形的面积吗?

八、板书设计:

圆柱的认识

两个底面圆形大小相等

圆柱

侧面沿高展开长方形底面周长不等于高

正方形底面周长等于高

斜线展开平行四边形

圆柱的教案篇4

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:v=sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题

圆柱的教案篇5

设计说明

本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

1.利用迁移、猜想,理解圆柱表面积的意义。

新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

2.利用演示、分析探究圆柱表面积的求法。

直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

3.联系实际,解决问题。

在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

课前准备

教师准备ppt课件

学生准备圆柱形实物

教学过程

复习导入

1.铺垫。

师:长方体的表面积指的是什么?(6个面的面积之和)

师:怎样求长方体的表面积?

预设

生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

2.迁移。

(1)圆柱的表面积指的是什么?(三个面的面积之和)

(2)怎样求圆柱的表面积?(生自由回答)

3.导入。

圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

探究新知

1.教学例3,探究计算圆柱表面积的方法。

(1)理解圆柱表面积的意义。

①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

(2)探究圆柱表面积的求法。

学生独立探究,然后汇报交流。

①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)

用字母表示为s侧=ch。

②底面积=πr2。

③圆柱的.表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。

2.教学例4,解决求圆柱表面积的实际问题。

课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

(1)学生读题,找一找这道题的所求问题。

明确:求做这样一顶帽子至少要用多少平方厘米的面料,就是求圆柱的表面积。

(2)想一想:怎样求这个圆柱的表面积呢?

①一顶帽子由几部分组成?

(一个侧面+一个底面)

②明确解题思路及解法。

先求帽子的侧面积:帽子的侧面积=πdh。

再求帽顶的面积:帽顶的面积=πr2。

最后求帽子的侧面积与帽顶的面积之和。

师:解题时需要注意什么?

圆柱的教案推荐5篇相关文章:

大班关于洞的教案推荐5篇

小班数学认识3的教案推荐5篇

大班5的加减法教案推荐8篇

幼儿园有关冰的教案推荐5篇

幼儿大班感恩的心教案推荐5篇

幼儿园关于桥的音乐教案推荐5篇

幼儿园有关鸟的教案推荐5篇

中班语言活动伞的教案推荐5篇

幼儿园大班点和线的教案推荐5篇

硅的教案推荐6篇

圆柱的教案推荐5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
148406